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Abstract. We have first solved numerically the mean field equations of the SI< model 
obtained with Parisi’s ansatz for a wide range of values of the temperature and the 
magnetic field. Then, using Sompolinsky’s formulation of the spin-glass dynamics 
that shows that the finite time spin correlations decay algebricdy with a power 
v ( T , h ) ,  we obtain the exact behaviour v(T ,h  = 0) down to T/Tc = 0.07 and the 
much weaker dependence on the magnetic field for several values of the temperature. 

1. Introduction 

It is now an accepted fact that for spin glasses the spin-spin correlation function has 
an algebraic decay for long times: C ( t )  - t - ’ ( T i h ) ,  but we do not know very much 
about the dynamical exponent v yet. For 3D spin glasses, Monte Carlo simulations [l] 
suggest that for low temperatures v tends to some small value compatible with zero, 
while for the SI< model the simulations [2] suggest that the value of v must be close to 4 in all the spin-glass phase (in the absence of an external magnetic field); the only 
attempt to  calculate this exponent for the SK model [3 ,4]  has been done usmg the 
replica symmetric static solution. 

In this paper we present the exact computation of v(T,  h)  for the SK model in the 
glassy phase. We find that the introduction of the replica symmetry breaking (RSB) 
solution reduces visibly the value of the dynamic exponent in the range T 5 0.7  T,, 
but it does not change dramatically the qualitative behaviour; in particular, for low 
temperatures v tends to a finite value (0.37 ...), quite different from zero. 

2. The static SK model 

The SK model [5] is a magnetic system composed by N Ising spins {Si = il, 
i = 1,.  . . , N } ,  with a Hamiltonian 

where the parameters { J i j }  .are chosen at  random from the distribution 

(2 .2)  
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The replica solution gives the free energy density of the SK model, defined as the 
average over the probability distribution of the J ’ s  of the quantity 

It can be proven [5,2] that 

is given by 

1 
(1 - a < b  Q:b) + ; lnTr, exp C[Q] 

with 

Tr, denotes the sum over all the possible configurations of n Isiiig spins { S a ,  

For integer n, (Qab) is a n  n x n matrix the elements of which must minimize the 
free energy density in the 72 -+ O+ limit. 

Parisi’s ansatz for the Replica Solution [6,7,8] gives the parametrization for integer 
n that supplies the correct solution of the SK model. The expression of the replica 
matrix Q for integer n is obtained as the A‘ - c13 limit of block matrices Q(K) ,  
defined in terms of the two families of parameters, { q t  ER, i =  1, . . . , I<} and {mj  ER,  
j = l , . .  . ,A’+ l}, by 

a = 1, .  . . ’ n}. 

Int (L) = Int (“) . 

Qab = Qi if { 
mi+l m i + l  

In the n + O+ limit, the two sequences of parameters {q i }  and {mj}-that supply 
the dimension of the j t h  block in the ma.trix &(“)-can be unified defining a function 

q(z)  = qi when mi 5 x < (2.8) 

that, in the Ii’ 00, 72 - O+ limit, becomes a continuous function in the interval 
2 E [ O ,  11. 

With this ansatz, the expression for the free-energy density of the system is [9]: 
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where q(z) and m(z, y) E J 8g(z l  y)/8y verify a set of coupled integro-differential 
equations that ca,n be written as  

+w 

m(z,y)  = Lw dg G(z ,y ; l , g ) t anh(Pg)+  

d ~ G ( z , y ; i , ~ ) m ( Z , ~ )  m’(2,g)  

(2.10a) 

(2.10b) 

(2 .10c)  

(2 .10d)  

where we have used the notation h ( z )  E da(z)/dz and b’(z, y) E d b ( z ,  y)/By. 

tions. 
In the first part of this work we have found the numerical solution of these equa- 

3. The dynamical SK model 

We will now consider a. set of N cont,inuous spins { -m < Si < +m, i = 1,. . . , N}, with 
the Hamiltonian 

where V ( S )  = roS2+uS4, and ro < 0 and U > 0 may be chosen constants independent 
of P; the Ising-spin limit is obtained sending T~ + -m and U + +m with Irol/u --i 2.  

For a dynamical mode1 we need a set of equations of motion with the properties: 
(i) the system must approach the equilibrium; 
(ii) we want to simulate the random termic agitation of the spins. 
The easiest choice is 

where T~ is the characterist,ic microscopic time of the spins and the {ti} are a set of 
random Gaussian noises with the properties 

Now we have a set of N coupled clifferent~ial equat,ions of motions, yet it is possible to 
decouple them performing the a.vera.ge over the J ’ s .  
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Performing that  avera.ge [3,4] we obtain for the equation of motion the expression 
t 

+ p z  + &(t)  + ph  + & ( t )  + P / dt‘ S,(t‘) G( t  - t‘) (3.4) 
-02  

where 

is the linear response function; 
(ii) z is a random magnet,ic field that, follows the equilibrium internal distribution 

of magnetic fields P ( z ) ,  which is obtained from the function P(z,y) of the static 
solution: P ( z )  = P(1 ,z ) ;  

(iii) the vi are a set of random Gaussian noises that verify 

(3.5) 

in which Ci(t - t’) 
(iv) h = lim h,( t ) ;  this limit must be site-independent for the validity of the above 

statement about the distribution P ( z ) ;  
(v) the last term in (3.4) is caused by the indirect effect of Si@’) on Si@): the 

i th spin polarizes the other spins a t  the time t’ and the reaction of the those spins is 
sensible also a t  the time t .  
It is worth noting that  in this equation the direct effect on the i th spin of the other 
N - 1 spins has been substitsutmed by a random local magnetic field C, = + qz, where 
z is nothing but the continuum component of this noise and vi is his fluctuating part .  

From this equation, Sompolinsky and Zippelius [3,4] obtained the following infor- 
mation about the autocorrelation function C ( t )  E 1/N xi C i ( t ) :  

(i) T > T,(h) C ( t )  -exp(-t/r(T))when t >> ro, and r ( T )  - (T - TJ-’ when 
T-+T,S; 

(ii) T 5 T,(h)* C ( t ) - t - U ( T ” L )  when t >> ro where, in the limit of Ising spins, 
v(T, h )  verifies the following equation: 

(S3(t)Si(i’)) - (Si(cm))2 is the spin autocorrelation function; 

t-oo 

but they were unable to obt,ain the correct behaviour of v(T ,h)  in the spin-glass 
phase because they did not, use the RSB solution for the distribution P ( z ) ;  solving the 
equations obtained from Parisi’s ansatz, we can now obtain the internal distribution 
P ( z )  and then the dynamical exponent v(T,  11). 
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4. Results 

In all the numerical calculations we have set J = 1, that  is equivalent to  measuring 
all the temperatures and magnetic fields in units of T,(O) = J .  

4.1, Thermodynamical test for the solutions 

From the numerical solutions obtained with Parisi's ansatz, we can immediately cal- 
culate the entropy density of the SK model as [lo]: 

This computation is very important because the other ansatz proposed for the replica 
solution failed in this test, giving a negative entropy density for low temperatures. 
Instead, our solutions give a low temperature behaviour for the entropy density of the 
type 

S(T,  h = 0) 
N k  = CUT' + 0(T3) 

and we have obtained Q = 0.71 & 0.01, where the uncertainty is due to  the fact that ,  
as of now, we have the solutions only down to T = 0.07. In figure 1 we can see the 
behaviour of the entropy density and the reduced entropy s (T)  S / ( N k T 2 )  in the 
absence of an external magnetic field. 

0.6 1 
0 . 4  t U i 

I I I I I 
0 0.2 0.4 0.6 0.8 1 .o 

T 

Figure 1. Behaviour of the entropy density (triangles) and of the reduced entropy 
(squares) for h = 0. 

4.2. Static results 

As a by-product of our calculations we have obtained all the interesting static quan- 
tities of the SK model. 

In particular, for the field distribution P ( z )  = P ( 1 , z )  our results are in  perfect 
agreement with the previous numerical solutions [9] in the range (T 2 0.20) studied 
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in that work. As was expected, the value of the distribution at the origin vanishes 
when the temperature is lowered; t8he results are compatible with a linear dependence 
of P(0)  from T :  

P(0)  = y T  + O(T2) with y = 0.73 z t  0.02. (4.3) 

Another very important quantity that we have calculated is the order parameter 
function q(z) for all the values of the temperature and magnetic field studied: we have 
found that it verifies a functional form of the type 

In figure 2 we can see the values obtained for the scale function Q ( z / T )  for many 
different values of the temperature and the magnetic field: we can conclude that the 
scaling law for the order parmieter function is valid (to the accuracy of the solutions) 
in all the spin-glass phase. 

0 2 4 6 
x / T  

Figure 2. Scale function Q ( z / T ) .  

4.3.  The dynamical e x p o n e n t  v(T ,  h )  

Finally, we give the result,s obtained for the dynamical exponent introduced in sec- 
tion 3.  The first thing that is worth noting is that the replica symmetric solution used 
in [3,4] gives a result in which v is independent of h. This result is exact along the 
De Almeida-Thouless line, where equation (2.10) has trivial solutions. With RSB we 
can compute v for all temperatures a.nd magnetic fields in the glass phase; in figure 3 
we show two of the result,s: in the left, graph we see the behaviour of v(h = 0) where 
the effect of RSB is more visible, and in the right graph is shown the dependence v(h)  
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for T = 0.07, where we can see how a.pproa.ching the critical line the effect of RSB 
vanishes. 

From all these results we can deduce the following conclusions: 
(i) v(T,  h)  increases with t81ie t,empera.ture in all the spin-glass phases: 

lim v(T,O) 

(iii) in all the glass phases v(T,h,)  depends only slightly on the magnetic field; 
in fact, we can see that there a.re no dramatic differences between the behaviour of 
the exponent down the De Almeida-Thouless line and in zero magnetic field (this 
also means tha.t the introduct,ion of RSB does not drastically change the results): for 
example we have that 

= lim v (T ,  h , ( t ) )  = 0.39529 * 0.00005 (4.7b) 

lim v(T,O) = 0.3726 f 0.0004 I RSB T-0 
(4.7a) 

while 

(iv) the behaviour obtained for v(T ,  h = 0)  shows that the simulations of [2] are 
not completely valid (although v becomes almost independent of the temperature in 
the range T 5 0.3), but deeply disagree from the results found [l] in the dynamical 
Monte Carlo simulations of three-dimensional spin glasses with only nearest-neighbour 
interactions, suggesting in this way that the upper critical dimension for spin glasses 
is greater than three. 
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